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i. System of Equations of an Ideally Plastic Body. Let us consider a body of revolu- 
tion in the coordinate system r, ~ , z by considering the stress and displacement rate tensor 
components to be independent of the angle ~. 

Here the equilibrium equations have the form 

Oar/Or-~- OTrz/OZ-~- (gr - - g ~ ) / r =  O, 

OTrz/Or-~- Ogz/Oz-~-Trz/r= O. 

(l.i) 

The displacement velocity vector components along the r, z axes are denoted by u, v, 
respectively. The associative law [i, 2] with Mises and Tresk plasticity conditions is taken 

as the flow law: 

(% -- a~) 2 q- (a~ -- %)2 q_ (a z _ %)s q_ 6~r~z __ 3/2 = 0; (i. 2) 

(a r - -  a z - -  2a~ + 2~) 2 - -  (r r - -  a~) 2 - -  4,~r~z = 0, ( i .  3)  

[ t, if ai or a 2 > o ~ ,  

z = , [ _ l ,  if  ~i or o 2 < o  w, 

al, 02 are the principal stress tensor components in the r, z plane. Here and henceforth, 
all the stress components are referred to 2 T �9 Conditions (1.3) correspond to the faces of 

s 

the Tresk plasticity prism [~i • = i, Io2--~I = i .* Then the associative flow law with the 

plastic potential (1.2) yields 

~ulOr = %(2o~ - -  % - - % ) ,  OvlOz = %(2% --  ~r - -  %) '  ( 1 . 4 )  

Ou/Oz q: Or~Or = 6%Trz, u/r = %(2% --  a z - -  at). 

Analogously for the Tresk case 

Ou/Or = %(gz - -  ~r -~- ~), Ov/~z = %(Or - -  Ocp + ~), ( 1 . 5 )  

Ou/Oz ~- Or~Or = --2%Vrz , u/r = %(2% -- a r -- az -- 2• 

We f i n d  t h e  c i r c u m f e r e n t i a l  s t r e s s  �9 a n d  t h e  f a c t o r  X f r o m  ( 1 . 2 ) ,  ( 1 . 3 )  a n d  t h e  e x p r e s s i o n s  

f o r  u / r  i n  ( 1 . 4 ) ,  ( 1 . 5 ) :  

For the Mises conditions 

O r -=- Oz u t 
o~ = ~ q- ~A i, % = r 2~A i '  

V F  3 { t ,  a ~ > o  al -4-a  2 
A , =  T { l - - [ (  ~  ~ = - - t ,  a ~ < a '  o = -  2 

(1.6) 

for the Tresk conditions 

% + o z  u ~] , 

% - - i  ~ + 2~---32 - •  %-- r A2 
(i.7) 

*The faceslol -- o2l = i are omitted from consideration since they result in the trivial case 

of u ~ 0 [2]. 
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= / (% - + 

•  ~ 1 =  t,  i f  ~ 1 - - % =  ti  z = - - t ,  ~ 1 =  t ,  i f  

• i, q = --i, if ~--~= I, x=--l. 11 = --I, 

Moreover, let us introduce the Levy variables 

% ~Oi---- I, 

i f  ~,p--o2---- I 

( 1 . 7 )  

(r r = ~ -}- 1: cos 2qL. ~z = ~ - -  "c cos 2r Trz - -  "~ sin 2~; 

= (gz -1- ~.~)/2 = (% @ az))2, T = (ql - -  (r2)/2 

(~ is the angle between the first principal direction and the r axis in the r, z plane) and 
let us substitute the values of o~ and ~ (1.6) and (1.7) into the equilibrium equations (i.i) 
and into (1.4) and (1.5), respectively. We afterwards obtain a quasilinear system of first- 
order equations to determine the five functions ~, ~, T, u, v after execution of certain 
manipulations, thus 

0(~ O,  2 ,  0r  
0--7 - -  2~ sin 2 ,  - -  cos 2~ ~ -k cos ~ -}- sin 2 ,  - -  - -  - -  

Oa f Ot~ 0~)  .. a t  0r 
-~- sm -- cos 2xp = -~- 2~ ~cos 2~ ~ ~- sin 2 ,  - ~ ' i  2 ,  ~ r  

Oa Ou /3 OK Ov u 
az -I- Or - -  r '  Or -}--~z - - - - ' - ' 7 - '  

Ou Ov OK Ov 
- -  sin 2~ ~ -l- cos 2~ ~ @ cos 2~ ~ -t- sin 2~ -~z --  0, 

or  11 (1.8) 
az -- r ' 

sin 2* 
F 

where 

I V+ f l  = - -  T cos 2r -k ~ (1 - -  4~ 2) for the  Mises condi t ions ,  

tz_ T cos 2 ,  -i- ~ - -  • for the  Tresk condi t ions ,  

i _ 3uz sin 2~p for the Mises condi t ions ,  

f3= ~ V @ ( t - -  4"2) 

t - -  ~lu sin 2 ,  for the  Tresk condi t ions  

(1.9) 

(l.10) 

Therefore, the differential operators of the system (1.8), corresponding to the Mises and Tresk 
plasticity conditions, agree and differ only in the right sides of the first and third equa- 
tions. It is easy to note that the third equation in the system (1.8) is the result of elimi- 
nating the factor X from the last relationships (1.4), (1.5), the fourth equation is the in- 
compressibility condition (the result of adding the first three expressions (1.4) or (1.5)), 
and the last equation of the system follows as the ratio between the difference of the first 
two and the fourth in (1.4) and (1.5), and is the condition for coaxiality of the stress and 
strain rate tensors. Exact self-similar solutions of the system (1.8) are obtained in [3]. 

2. Hyperbolic Regularization, Relationships on the Characteristics. Let us subject the 
system (1.8) to a characteristic analysis for which we write it in the matrix form 

At r @ Btz = f, 

t 2 -- % sin 2r 0t 0t (2. i) 
t =  t 3 = ' f f 3 / r  | '  tr--Or' t z - - # z '  

t4 --0/r J 
t 5 

0 ~ 0 
d c 0 2~c d 0 0 

A = B= 0 0 v , 0 i , i 0 
i o O O l j  

0 ' 0 - - c  0 O d c 

c = s i n 2 ~ ,  d = c o s 2 %  i x = v =  O, 
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from which it is seen that the matrices A, B are degenerate for any functions ~(r, z), T(r, z) 
and the system (1.8) does not result in normal form. The corresponding characteristic form 
[4, 5] is identically zero for any directions n(n~, ni) of the r, z plane 

(n 1, hi) = 2 (~n 1 + vn~) [(n~ --  n~) cos 2* + 2nln 2 sin 2 , ]  2 ~ O, ( 2 . 2 )  

and the equations for the stresses and strain rates (1.8) in the axial symmetry case, which 
are a direct consequence of the associative flow law with the Mises and Tresk plasticity 
conditions, are not subject to classification (a system without type).* 

Let us consider the possibility of regularizing the system (1.8) by considering that the 
latter should be hyperbolic with multiple characteristics (the stress field characteristics 
agree with the velocity field characteristics). Let ~ ~ 0 and ~ @ 0; then 

{ ' ~ / e  ('JAI~ tg2 ,__  i = 0 ' ( 2 . 3 )  [(n~ --  n~) cos 2,  -+ 2,qn 2 sin 2,12 : 0 or t " 2 ]  + 2 \'~2] 

from which 

n/nz = - - t g ( ,  - -  ~I4), ( n /n j  = - - tg (*  ~ ~I4). ( 2 . 4 )  

Let us introduce the continuously differentiable functions ~+(r, z) = const, that determine 

n+(n~ + ~+(r smooth curves in the r, z plane. As the direction vectors , n~) we take n = grad , 

z). Then we will have respectively along the lines ~+(r, z) = const 

dr/dz = ctg(* -- ~ / 4 ) -  a1 = a ~ - - a ~ ( a - l i n e ) , .  ( 2 . 5 )  

d r / d z - c t g ( * - ~  314)= a 2 = a~(~-Hne). 

Therefore, if it is assumed that ~, v ~ 0, then duplicate characteristics defined by (2.5) 
correspond to the characteristic form (2.2). It is seen from (2.5) that the a-, B-lines are 
mutually orthogonal and agree with the lines of maximal tangential stress in the r, z plane, 
i.e., are slip lines. Let us note that (2.3) corresponds to the first, second, and fourth, 
fifth equations of the system (1.8). The factor ~nz + ~n2 corresponds to the third equation. 
Let us demand that nl/n2 equal --tan(~ -- ~/4) or --tan(~ + ~/4) as in (2.4), i.e., 

~n~ + vn~ = 0 ~ n/n2 = --v/~:= - - tg (~  + ?~/4)~  ( 2 . 6 )  
v-e, ~t= ~ c t g ( * + ? ~ / 4 ) .  

H e r e  s i s  a s m a l l  p a r a m e t e r ,  and  y t a k e s  on t h e  v a l u e  1 o r  - -1 .  T h u s ,  r e g u l a r i z a t i o n  o f  t h e  
system (1.8) substantially reduces to the insertion of an additional small component into the 
left side of the third equation 

e ctg ~ + ? - ~ -  ~ , -~zJ+-~-z + Or--  r 

T h e r e f o r e ,  i t  i s  p r o p o s e d  t o  u s e  ( 2 . 7 )  i n s t e a d  o f  t h e  t h i r d  e q u a t i o n  i n  t h e  s y s t e m  ( 1 . 8 ) .  
H e r e  ( 1 . 8 )  a r e  t r a n s f o r m e d  i n t o  a h y p e r b o l i c  q u a s i l i n e a r  s y s t e m  w i t h  m u l t i p l e  c h a r a c t e r i s t i c s  
(y  = --1 ~ u - l i n e  i s  t r i p l e ,  and  t h e  B - l i n e  i s  d o u b l e ;  y = l ~  a - l i n e  i s  d o u b l e ,  t h e  B - l i n e  i s  
t r i p l e ) .  

I t  c a n  b e  n o t e d  t h a t  ( 2 . 7 )  a l l o w s  o f  p h y s i c a l  i n t e r p r e t a t i o n .  I n  f a c t ,  a c c o r d i n g  t o  
( 1 . 4 )  and  ( 1 . 5 ) ,  t h e  s h e a r  v e l o c i t y  Yrz  a t  a n  a r b i t r a r y  p o i n t  o f  t h e  p l a s t i c  f l o w  d o m a i n  i s  

p r o p o r t i o n a l  t o  t h e  t a n g e n t i a l  s t r e s s  mrz a t  t h i s  p o i n t ,  w h i c h  i s  r e f l e c t e d  b y  t h e  r i g h t  s i d e  

* I t  i s  shown i n  [6]  t h a t  t h e  a x i s y m m e t r i c  p r o b l e m  w i t h  t h e  M i s e s  c o n d i t i o n  i s  e l l i p t i c ,  w h e r e  
t h e  p a s s a g e  t o  a s e c o n d  o r d e r  s y s t e m  i s  r e a l i z e d  b y  d i f f e r e n t i a t i o n .  The e q u i v a l e n c e  o f  a 
s y s t e m  o b t a i n e d  t h u s  and  t h e  o r i g i n a l  was  n o t  i n v e s t i g a t e d ,  w h i l e  s u c h  a p a s s a g e  i s  n o t  
t r i v i a l  [4]  f o r  n o n l i n e a r  s y s t e m s ,  a n d  n o t  l e g i t i m a t e  i n  t h e  g e n e r a l  c a s e .  I t  i s  o n l y  em- 
p h a s i z e d  i n  [ l ]  t h a t  t h e  a x i s y m m e t r i c  p r o b l e m  w i t h  M i s e s  c o n d i t i o n  i s  n o t  h y p e r b o l i c .  E q u a -  
t i o n s  f o r  t h e  v e l o c i t i e s  ( k i n e t i c a l l y  d e t e r m i n a t e  p r o b l e m )  w e r e  i n v e s t i g a t e d  f o r  t h e  T r e s k  
c o n d i t i o n s  i n  [ 2 ] .  They  t u r n  o u t  t o  b e  h y p e r b o l i c .  I f  s i n  2~ ,  c o s  2~ a r e  e x p r e s s e d  f r o m  t h e  
t h i r d  e q u a t i o n  i n  ( 1 . 8 )  a n d  s u b s t i t u t e d  i n t o  t h e  f i f t h  e q u a t i o n ,  t h e n  we a r r i v e  a t  t h e  s y s t e m  
o b t a i n e d  i n  [ 2 ] .  

462 



of the equality (2.7). The derivative of the maximum tangential stress T in the direction of 
one of the slip line families is written in the square brackets on the left. Therefore, if 
the existence of a certain system of slip lines with discretization parameter ~ [7] is 
assumed in the plastic domain, then the shear Yrz at each point is determined by the tangen- 

tial stress T and the projection of the gradient of the maximal tangential stress T with 
rz 

minus Sign on the active family of slip lines since the elements are deformed along slip lines 
in the direction of greatest growth of the maximal tangential stress. 

For definiteness, we consider that y = --i in (2.7), and we introduce the differentiation 
operators along the characteristics 

dz &- Oz ~- ctg ~ - -  -~r (along a-line) 

d + O  ( ~ ) 0  
dz-- Oz +ctg ~ + - ~ -  ~ (along B-line) 

Then according to the algorithm of reduction of the system (1.8) 
with (2.7) taken into account, we arrive at relations on the characteristics 

d - c i  - -  2"cd-q~ @ k l d - v  - -  G t d r ,  

d+~ @ 2"cd+~l~ @ k , , d + v  = G . , d r ,  d" '~  @ k , ~ d - v  : Gadr ;  

d - U -  Vd-t)= (a4U-  ~/)dz.)2r, d+V @ Ud+d? = (aaV ~- U)dz/2r. 

Here 

to characteristic form [5] 

( 2 . 8 )  

(2.9) 

t [ "~sirt2~ t ] 
G: = -7-  l :  al s (-- I a + u tg 21p) , 

G~ t [ i  "csin2, t ] t 
= = - 7  [ a~ e /~ ' Oa=--er  ( - - / ~ + u t g 2 ~ ) '  

2al 2a~ 2 
1"~ == - 7  tg 2q,, k 2 . . . .  ~: lg 2xp, k'8 == -7- tg 2% 

U, V are the displacement velocities along the ~-, B-lines, respectively, and fl, f3 are de- 
fined according to the Mises and Tresk conditions from (1.9) and (i.i0). Let us note that as 
r, e § ~ the equations (2.8) go over into the Hencke relationships, while (2.9) go over into 
the Gehringer plane problem of the theory of ideal plasticity. 

3. Iteration Approach to the Solution of Boundary-Value Problems for the Systems (2.8), 
(2.9). The mathematical theory of quasilinear hyperbolic first order systems [4, 5] assures 
theexistence, uniqueness, and correctness of the Cauchy problem, the characteristic and mixed 
problems for such systems. However, the solution of real applied problems for the systems 
(2.8) and (2.9) is difficult because the boundary conditions on the boundary surfaces for the 
systems under consideration should simultaneously contain stress (vector) and displacement 
velocity components and the boundary of the rigid and plastic domains is not known in advance. 
The joint assignment of the stress vectors and displacement velocities on the surface boundaries 
is not possible in real problems. Consequently, it would be desirable to have an algorithm to 
solve the boundary-value problems for the systems (2.8), (2.9) that would permit seeking the 
stress and velocity separately (by analogy with the plane strain problem) but in a definite 
sequence [8, 9]. For instance, we find U, V from (2.9) for a known function 4, and then by 
substituting them as knowns in (2.8), we determine ~, 4, T, etc. The existence of such an 
approach is assured by the agreement of the domains of definiteness of the solutions for the 
stresses and the displacement velocities (the characteristics (2.5) agree). 

In conformity with the above, we define the vector-functions S, U corresponding to the 
stress and strain state in the form 

S = [51, Se, $3, O, 0], u = [0, O, o, ua, us], (3.1) 
where 

S 1  = (~ = h :  $ 2  = ~ ~ t2 ,  S a  ~ T ~ ta ,  u 4 ~ u = t4:  u 5 = v ~ t~.  
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Then t from (2.1) is represented by a direct sum and the system (2.8), (2.9) can be written 
as 

lh" ~( U ) + %  ~r = g ~ ( r , S + U )  (k=L2 ,3 ) ;  (3.2) 

0u I [OU-~,ah~r]=gh(r,S (k = 4, 5), ~'[Oz +U) (3.3) 

where gk are the right sides of (2.2) and (2.9), while i k are the eigenvectors of the charac- 

teristic matrix of the system (1.8), (2.7) corresponding to the eigennumbers ak: 

I x = [t, --2S8, 0, 0, kl], 12 = [1, 2S3, 0, 0, k2], 
13 = [0, 0,  1, 0,  - -k~] ,  14 = [0, 0,  0,  a4, l ] ,  15 = [0, 0,  0,  as, t ] .  

We shall consider the initial conditions of the Cauchy problem for the system (1.8) with 
the regularization (2.7) to be given on the segment a~ r ~ b of the z = 0 axis (the general 
Cauchy problem reduces to that under consideration by replacement of the independent variables 
r, z, which does not alter the form of the equation (1.8)): 

o(r, 0 )=  ~o(r),~(r, 0 )=  *0(r), t(r, 0 )=  to(r), 
u(r; O) :  u0(r), v(r, O)= Vo(r ). 

A c c o r d i n g  to  t h e  v e c t o r - f u n c t i o n s  ( 3 . 1 )  i n t r o d u c e d ,  t h i s  c o r r e s p o n d s  t o  t h e  f o l l o w i n g  
i n i t i a l  c o n d i t i o n s  f o r  t h e  c h a r a c t e r i s t i c  s y s t e m  ( 3 . 2 ) ,  ( 3 . 3 )  

So(r) = [S~(r), S~(r), S~(r), 0, 0], Uo(r)= [0, 0, 0, u~(r), u~(r)]. ( 3 . 4 )  

I t  i s  assumed t h a t  So(r), Uo(r) EG~a,b I �9 The s m o o t h n e s s  o f  t h e  r e m a i n i n g  i n i t i a l  d a t a  g k '  k k '  ak  

f o l l o w s  f rom ( 1 . 9 ) ,  ( 1 . 1 0 ) ,  ( 2 . 5 ) ,  ( 2 . 8 ) ,  ( 2 . 9 )  f o r  r , a  > 0.  

We determine an iteration process for the construction of the solution of the problem 
(3.2)-(3.4). Let U(I) be a vector-function belonging to C(I) and such that U(1)(r,: 0) = Uo(r). 

Substituting U(1)(r, z) in the system (3.2), we determine S (~) as the solution of the Cauchy 

problem with initial conditions S(~)(r, 0) = So(r). Afterwards, the solution S(1)(r, z) that 

has been found is substituted into (3.3) and the Cauchy problem U(2)(r, 0) = Uo(r) is solved 

for a linear system. Then the definite approximation U(2)(r, z) is substituted into (3.2) and 

S(2)(r, 0) = So(r) is determined. And thus this process is repeated over and over. 

Let the approximation U (i) ~ C ~ be constructed; then we have for S (i) 

and we determine U (i+t) 

1(~ *)" + a(h*) 0S(~) 1 !r~ 2_ a( o 0U(Ol__ ! - - t  - g ( 1 ) _  l (~)  (k = 1, 2 3),  0r J--  L az ~ h ~r J 
S(0(r, o) = S0(r), 

from the solution of the Cauchy problem for a linear system 

(3.5) 

. ,  [OU (~§ ~)U (i§ ] 
ltiJ~ .[l~0z ~2_ a(Olt --~---r J = g(O (k = 4, 5), U (/+1) (r, 0) = U 0 (r). 

(3.6) 

It follows from the existence theorem for the solution for quasilinear and linear systems 

[3, 4] that a solution S (i) , U (i+I) E C(I) exists in the domain of definiteness G (i) of the 
problems (3-5), (3.6). So that all the approximations are determined and continuously 

differentiable in the domains G (i) (the domains of definiteness of the problems (3.5), (3.6) 
agree since the characteristics of the system (3.5) are also the characteristics of the 
system (3.6)). Moreover, since the initial problem (3.2)-(3.4) is quasilinear, then the do- 
main G of definiteness of its solution is sought simultaneously with the solution S, U and is 
not generally known in advance. According to [4, 5], a domain Go ~ G of the variables r, z 
can be indicated in which the solution and its first derivative remain known to be bounded. 
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4. Boundedness of the Successive Approximations and the First Derivatives. Let us show 
that there exists a certain domain Gx belonging to the domain Go and all domains G(i) such 
that the boundedness of s(i), u(i) and their first derivatives holds therein. To do this, 
we write the continued system for (3.2) and (3.3). The continued system for quasilinear 
hyperbolic equations is determined by differentiating the initial equation with respect to 
the independent variable [5] and results in the Riemann invariants which have the following 
form in our case 

r . a ( s + u )  
i t = i n "  -~r ~ ( I t = l , 2  . . . . .  5). 

Then the continued system for (3.2) and (3.3) takes the form 

OTI,. . aTh Z h @ L ~ T  a @  h T __ -- == . Lr~T~. .  f,' Oz -c-Oh Or 

0"--7 = q -  . . . .  

( 6 . 1 )  

Here 

L ~' 0/h (k = l ,  2, 5); 1 J:  /~ -}- ( -  1)~+~/~ c (h. = t 2); 
= 0-7  . . . .  A 

l "a== /a ;  t:4 .... {4 - -  [~, F s =, c; 
, . 0 4 .... a 5' 

Lh ( - - t ) c x + h [ / 9 ,  [)]"h) O/h-}-2f3] ( ~ z , k = l , 2 ) ;  % k'-"- c-- ( -  

2, k = 1, 
A =  4 ta '  k = 2 ;  

[ 0ka  0 / a l  ( - - t ) ~ 0 f h  ( a = t , 2 ,  k = 4 , 5 ) ;  
L ~ = = ( - - l ) ~ [ ~ c + ) ~ - j  ( ~ = ~ t , 2 ) ;  I.ha-- 4t.~ Ot 2 

h ==: 2 ~ -;- ( - -  e + (-= t) h-klcd (]; == 1, 2); L 3 0lq' L 4 = L~ = 0; L a = - -  

- %-_.._% 2& (-- oq]d§ (-- },,~ (-- ; OL~jg+ 

+ ( -  t) ~-~ % (_ t)~+h a& ] {~,, ~.= 4, 
s + ~ ot,j (1,=--~,2,~=4, s); ~,= % k=5; 

o r o , , , )  _ .  o , 1  lfl - - -  (__ ~.)O~q 1 
u a 4 ----. a 5 [ 

013 0]~'8 ~1 ~rx +1 0f3 /"3 -~- a Ot5] (0~:  4, 5); 

(4.2) 

a 1 ao~ 
Fo~-- = = F1=(-I)~-~ -, F~=(--I)~7~ 3 (~=1,2); k--0(~ 1,2, k 3,4,5); 

F ] = - ~ ;  F~=o (k=1,2,4, s); 

k 2 -- k 1 a4a 5 a4a 5 a4-aa5 F 1 ( -  1) a 2 ~ - ~ , ~  G = ( - t )  " d ~ - % ,  F~=(--1)  ~k 3~4_ ~ 

a4a5 2a 4 @ a 5 a t -J[- 2at) 
4,5); 

Oa i Ok i ) 
L ~  = Lhaf~ t 3, ai, k i,  Ot 2 , Ot~ (i,  k, z~, 13 = 1, 2 . . . . .  5); 

\ 

%/~ - -  as/4 kl  + k2 /~ - -  11 
c - -  a 4  _ _  a 5  , d - -  4 t ~ - -  ' g - -  4 t  a 

The summation is over the Greek subscripts (it is missing over the subscript k). 

Besides the system (4.1), we write the system of ordinary differential equations 

dP/dz = L o ( N ) @  L I ( N ) P  @ L2(N)p2,  d N / &  = f o ( N ) +  F~(N)P ,  (4.3) 

465 



in which the coefficients of the right sides are determined as 

L o (N) : max U L[[, L : [L 1, L 2 . . . . .  Ls], 
Go(N) 

L l ( N ) : m a x  [L~II, L ~ ( N ) =  max max L ~ 

F o(N) = maxl]FI], F : [ F  1 ,F  2 . . . . .  Fs], 
~o(N) 

F~(~V)=maxllF%l l, G o ( N ) = { a < ~ r < ~ b ,  O~<z~<Zo; [] t [[ -~< N}. 
Go(N) 

(4.4) 

Let No, Po denote the quantities 

N O = max S (r) -~- U o (r)I1' Po = max 1 ~ (9 (S O -~- Uo) 1 
a-.<r-.<b il 0 a~<r~<b k" -~r B 

and let us give the initial conditions 

p(o) : Po, N ( O ) =  No ( 4 . 5 )  

for the system (4.3). We call the system (4.3), (4.4) majorizing, and following [5] it can 
be shown that the functions N(z), P(z) which are a solution of the problem (4.3)-(4.5) and 
remain bounded here in the interval 0 ~ z ~ zo majorize the growth of the solutions t = S + 
U. The domain Go is constructed by means of the function N(z). 

Let us write down the continued system for equations (3.5), (3.6) (we write (i + i) in 
place of (i) in (3.5)) in the form 

or(:§ 
_ AhT(i) k ( i+1 )  f h  T ( i ) T ( i + l  ) ~- a(hi+l) Lk  ~- - - (z-a  -~ M a T 2  q-  ~ a ~ ' , ~  *fi �9 

az ar 

Fh. h ( i + l )  (k ,  0~, ~ t, 2, 5), Oz - -  -~  FaT(z = �9 �9 �9 ' 

(4.6) 

where 

r(~+~) = 1~. ~ (s + u )"+"  levi+" ( k -  t, 2, 3), 
o~ ' lh = [,(~) (k = 4 5), 

a n d  L k ,  F k ,  F k L k a' c~fl are determined in conformity with (4.2), except t 

t (i) should be substituted in place of t. Only the coefficients A k 

(i) t (i+i) 
, or t 

N k a r e  d i f f e r e n t :  

~4 - -  -5  

M~ -- a(i_l) -- a~i_l) (c(i)d(i) + g(i)) -~2 J 

( k , ~ = ~ , 5 ) ,  a (a(i-i), k = 5 .  

Comparing the coefficients (4.7) with the analogous coefficients in (4.2), we obtain 

L~ (r, t) ---- A ah (r, t,  t) -~ M~ (r, t,  t) (k, a ---- 4, 5), 

L ~  (r, t) : Lah~ (r, t ,  t) (k, a ,  ~ = 1, 2 . . . . .  5). 

By analogy with (4.3), (4.4), we determine the majorizing system for the continued (4.6) 

dz = L o ( I v ) ' ~ - K I ( I v ) Y ' ~ - K u u v ) I ~ 2 '  dz ~ Fo ~ N~ ~ FI ~ N ~ P~ 

(i-I) 

(4.7) 

(4.8) 

(4.9) 
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where Lo, Fo, Fz are determined, as in (4.4), while 

KI (N) : K' (N) -[- K~ (~r ), K" (N) : max Ah~(r,x,t), 
Go(~) 

K" (-N) ---- max max h Co(.~ ) 13=1,~ ..... 5" Lai~ (r, x, t)[[, 

Ilt[[ < ~-,. Ilx [)< ~. 

Let us give the initial conditions 

/ ~ 0 ) -  Pa, 21~(0) = No 

for (4.9). Comparing coefficients of the system (4.3), (4.9) and taking account of 
have 

LI(N) < KI(N), L2(N) ~ K2(N). 

Therefore, the solution of the problem (4.9), (4.10) majorizes the growth of the solution of 
the majorizing problem (4.3)-(4.5) 

N(=) < ~(~), p(=) ~ ~(~). 

Therefore, if the domain G~ is constructed by means of the function N(z) as Go is constructed 
by means of N(z) [5], then G~ ~ Go. 

Let us assume that all the successive approximations (S + u)(J)(j = i, 2, 
the inequalities 

l l t~ < ~(~ ) ,  I) TO)I I < P ~ = ) ,  

and let us show that (4.11) holds even for the (i + l)-th approximation. 
notation 

(4.10) 

(4.8), we 

..., i) satisfy 

(4.11) 

Let us use the 

t~+l (~) = ~ .p  l/t<~+~)It, T~+~ (=) = ~up 11 T (~+~) ll; 
r r 

then we will have from the system (4.6) 

dTitl 
dz 

dti+l 
dz 

- -  ~ L 0 (~q) -~ K' (N) > ~- K" (1r i T i +  1 -~ K 2 (N~) f iTs+ 1 , 

- - - -  ~< F 0 (~) + F~ (~V) >, 

so that evidently 

q+~(=) <-~(~), ~+1(~)< P(~)- 

S i n c e  t h e  i n i t i a l  a p p r o x i m a t i o n  c a n  b e  s e l e c t e d  t o  s a t i s f y  ( 4 . 1 1 ) ,  t h e n  i t  i s  t h e r e b y  p r o v e d  

t h a t  a l l  t h e  a p p r o x i m a t i o n s  (S + U ) ( i )  s a t i s f y  ( 4 . 1 1 ) ,  and  t h e r e f o r e ,  t h e  d o m a i n  G1 e x i s t s  
and belongs to all the domains G(i) and Go. 

5. Uniform Convergence of the Successive Approximations in GI. If the residual 

p~+ l )  = l ~ ) . ( u ( ~ )  - u(~>) (k = 4, 5),  ( 5 . 1 )  

is introduced, then following [8] it can be shown that for small 0 < z< zo the estimate 

R i +  x (z) : max !1 p(i+l)II ~ (exp (qz,) - -  i)}1S(O - -  S(*-x)}l, q = cons t  
T , r ~ G  l , ~ -.<r 

(5.2) 

holds. Furthermore, by using (5.2), we prove the uniform convergence of the successive ap- 
proximations {s(i)}. To do this, we define analogously to (5.1) 

8~ = l~) . ( s (~)  - s(~-~)) (k = t ,  2, 3) ( 5 . 3 )  
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and we write the system (3.5) corresponding to the (i -- l)-th approximation 

"i 1" lOS(i-l) "i " OS(i-l)] " -" 1(i-1) [ / OU(i-1) a(/--1) 6]['J(i-1)/] ]~ - ) . l - - 2 - a  ( -1 )  ~ [ _ f t i - a ) _ _  
k 1. O= ~ h " Or J - ' ~  ~ "k as -k ~ Or J" 

(5.4) 

Using the theorem on finite increments, we have, for instance 

I 
):(hi) ](2--1) ,I Ofh (t(i-1) (t~;i) (5.5) 

- = ~ + ~ ( t ( ~ ) -  t ( i - ' ) )  d~ - l ~ - ' ) .  

o 

We now subtract (5.4) from (3.5), respectively, by using here the relationship (5.5), and 

similar ones for ~(~) 1 (~-~) n(i)~(~) �9 " -h ~h ~ =(h~-l))](k i-I) and also by taking account of the possibility of 
:'h - -  h ' 

t h e  r e s o l u t i o n  o f  ( 5 . 1 ) ,  ( 5 . 3 )  w i t h  r e s p e c t  t o  u ( + ~ )  - - u  ( ) ( k  = 4 ,  5 ) ,  S k k 

1 ,  2 ,  3)  we a r r i v e  a t  a l i n e a r  s y s t e m  f o r  

06(~ 0 (5.6) 
a(i) - - ~  rllSx(i) ~ Xan(i)  (k, ~ = 1 , 2 , 3 ,  4,5) .  

~8_ o.~ are defined in terms of the functions fk' ik' U, S, and their first derivatives. Here 

Integrating (5.6) along the characteristics in GI, we obtain for each point of GI 

1 ~ p  + k'~ I d~' 16(2) 1~< np4i) xao(~) 
o 

where by virtue of (4.ii), the following inequalities hold 

Then if we introduce 

"~,r~G1,'~-.<z 

and use the estimating inequality (5.2) written for Ri(z) we obtain 

S z 
D i(z)~<E [Di_ l ( t ) + D  i('O]d'~, D i ( z ) < ~ C ~ D i _  I(T) dT 

o o 

or 

(Cz)(i-1) 
D ~ ( z ) < c o n s t  ~ .  , C = c o n s t ,  ( 5 . 7 )  

which indeed proves the uniform convergence of the successive approximations {S (i) } inGx. It 

is evident that the uniform convergence of the sequence {U (i) } in GI also follows from (5.2) 

and (5.7). Finally, considering the continued system (4.6) and using the continuous dependence 
of the solution of the Cauchy problem on the initial data, we arrive at the uniform conver- 
gence of the sequences {T(i)},{~t(i)/~z}, and therefore, of {~t(i)/~r} as well. By means of 

a known theorem of analysis, this means that the vector functions S = lim S (i), U = lim U(i) 

(i + ~) are continuously differentiable in Gx. Passing to the limit in (3.5), (3.6), we 

conclude that t = S + U is a solution of the problem (3.2)-(3.4). Since the proof of the 
convergence of the method of solving the Cauchy problem considered for the system (3.2) and 
(3.3) was based on the characteristic approach, then it will carry over to the case of the 
characteristic and mixed problems without substantial changes. 

Therefore, the proposed hyperbolic regularization of the ideal plasticity equations and 
the iteration method of solving boundary-value problems for the system (2.7), (2.8) permit 
solving axisymmetric problems with Mises and Tresk conditions in a rigidly plastic formula- 
tion for any arbitrarily small e = r > 0. The rate of mechanical energy dissipation will be 
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nonnegative everywhere in the flow domain. It is convenient to use the solution of (2.3) on 
a slip line mesh of the complete plasticity state [2, 9] as the first approximation of the 
velocity field. The condition of embedding of the domains of determinacy of each of the 
subsequent approximations, starting with the first, is here satisfied, which turns out to be 
essential for the numerical realization of the method of characteristics in specific problems 
since they are nonlinear. 

In conclusion, we note the following. 

i) It can be shown that the finite-difference equations corresponding to the system 
(2.8), (2.9) satisfy the conditions of the regularizing operator [i0], for which it is suffi- 
cient to linearize the system (2.1) by using iteration of the previous step in determining 
the matrices A and B. Here A and B are determined approximately and are poorly specified, 
which allows introduction of the small parameter ~ which is included inthe scheme to construct 
the regularizing operator [i0] (convergence in ~ is not considered in this paper). 

2) The presence of the parameter y in (2.7) permits obtaining a qualitative and quanti- 
tative description of the phenomenon of formation of dead zones, domes, pulsations in conical 
outflow, drawing, pressing, and insertion problems. Assuming y a random function with the 
values ~i depending on the geometry of the flow process, the boundary conditions, and other 
factors, we arrive at a flow with domains in which the multiplicity of the characteristics 
~, B changes. The active flow surfaces along which the third of the relationships (2.8) is 
satisfied can thereby be alternately ~ and B surfaces. The alternation of such domains is 
generally random in nature, by which the above-mentioned phenomena are perhaps explained. 

LITERATURE CITED 

i. R. Hill, Mathematical Theory of Plasticity, Oxford University Press (1950). 
2. D. D. Ivlev, Theory of Ideal Plasticity [in Russian], Nauka, Moscow (1966). 
3. M. Sh. Shtein, "On certain exact solutions of the ideal plasticity equations in the 

axial symmetry case," Prikl. Mekh., 19, No. lO (1983). 
4. R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964). 
5. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their 

Application to Gas Dynamics [in Russian], Nauka, Moscow (1968). 
6. P. S. Symond, "On the general equations of problems of axial symmetry in the theory of 

plasticity," Q. J. Appl. Math., 6, 448 (1949). 
7. A. F. Revuzhenko and E. I. ShemYakin , "Certain formulations of plasticity boundary-value 

problems," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1979). 
8. M. Sh. Shtein, "On an approximate method of solving ideal plasticity theory equations," 

Prikl. Mat. Mekh., 38, No. 4 (1974). 
9. M. Sh. Shtein, "Stress and strain state of a half-space in the neighborhood of the end- 

face of a circular cylindrical recess," Fiz.-Tekh. Prob. Razrabot. Poluzn. Iskop., No. 
4 (1975). 

i0. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Incorrect Problems [in Russian], 
Nauka, Moscow (1979). 

469 


